國 立 陽 明 交 通 大 學 演 講
講 題:整合能源消耗與製程輔具資源綁定之流線型生產排程研究
(Flow-Shop Scheduling with Consideration of Energy Consumption and Auxiliary Resource Binding)
主 講 人: 黃奎隆 副教授 (國立臺灣大學工業工程所)
主 持 人: 王志軒 教授
主辦單位: 陽明交通大學共同教育委員會
時間:110年 11月 30日(星期二) 13:20~15:10
地 點:線上會議(Google meet)
演講摘要:
本研究探討不同工件需搭配不同輔具資源綁定生產,且各生產輔具皆有其相對應之能源消耗量,在滿足各生產時間點總能源消耗量之限制下,如何以最佳輔具資源配對,解決流線型工廠之生產排程問題如工件等待特定輔具資源釋放導致機台被迫閒置,或工件選擇能源消耗量高之輔具生產導致生產成本提高等議題。 本研究提出以基因演算法為基結合混整數線性規劃模型之兩階段啟發式演算法(GABTSO),並以最小化總完工時間與加權總能源消耗成本為目標求得品質優良的排程最適解。而在基因演算法的部分,本研究亦提出一演算法參數最佳化之機器學習模型,僅需告知期望排程之生產情況如工件數、輔具數等資訊,該模型即會自動輸出最佳之基因演算法參數設置以獲得最佳之求解效果。 This study considers a flow-shop scheduling problem where a job requires an auxiliary tool simultaneously for machine processing. Once the auxiliary tool is assigned to a job, that tool can’t be released until the job completes its operations. The numbers of auxiliary tools are limited, and tools and jobs are many-to-many correspondence. In addition, each pair of tools and jobs consumes different level of electricity. We propose a two-stage heuristic algorithm which combines a genetic algorithm and a linear programming model to solve the problem. Since different time periods have different energy consumption bounds and costs, the objective is to determine a production scheduling that minimizes the weighted makespan and the total energy consumption cost. A numerical analysis is conducted to investigate how the proposed algorithm performs under the various production settings. |
演講性質:學術研究專題
歡迎聽講